[Recommended]Develop an effective and standard predictive model to treat Alzheimer’s disease.

Develop an effective and standard predictive model to treat Alzheimer’s disease. Literature Review This article has used Predictive Modelling of the Progression of Alzheimer’s Disease…

Develop an effective and standard predictive model to treat Alzheimer’s disease.
Literature Review
This article has used Predictive Modelling of the Progression of Alzheimer’s Disease with Recurrent Neural Networks (RNN) to identify the appropriate time for the patient regarding his/her next visit for medical checkup. This model has the capability to collect the various visits of a patient with different time intervals to predict new medical visit dates with a more even time interval. The study also discussed that more than 5.4 million people in the United States are living with Alzheimer’s which cannot be fully treated or reversed with the current medical and treatment system, however, with effective prevention technology its prevalence can be controlled. Various preventive or predictive models has been developed in the past however, almost all of them had a number of issues which made them less attractive. The use of this model helped in getting 99% accuracy based on the medical history of the patient (Wang, Qiu & Yu, 2018). In the study conducted by Wang, Qiu & Yu (2018) an RNN with LSTM cells-based progression model was proposed to predict the future stages of the Alzheimer’s disease. The model is found successful and authors showed their interest to use this model for the prediction of other chronic disorders.
Over the last five years, the research in the area of dementia risk prediction and specially for the Alzheimer’s disease got a boost. Numerous old models have been improved while some new models were also developed to increase prevention of this disease by predicting its numerous stages. In 2010, a systematic review identified that there are more than 50 models developed for the prediction of dementia and these models exhibited a difference in terms of risk score calculation, model accuracy level, follow up time, and disease outcome. This study identified a novel and effective linear model which is invented to predict the disease status in a future perspective. To check the effectiveness of their model, the authors used available data on Alzheimer’s disease. This study also addressed the issue of data missing through matrix factorization (Nie et al., 2017). This study has analyzed various articles in order to find that whether there is any model that could perfectly make the prediction regarding dementia. By analyzing various articles, this article contributed in this field by providing information about various studies and models that has been used for the prediction of dementia and Alzheimer’s disease. Although, there are various models developed by many researchers, however, still there is no such model about which it can be said that it is a perfect model for dementia/Alzheimer’s risk prediction among people due to the absence of risk score validation researches. There is a need to have lots of work to improve the existing models as well as to develop new models considering the weaknesses of existing models (Tang et al., 2015).
This study has investigated the relationship between Alzheimer’s disease and aging. Researchers has found a strong connection between aging population and Alzheimer’s disease and it is assumed that innovation could help in the partial resolution of the aging related societal problems. This study has contributed in this field by identifying a biomedical model of Alzheimer’s disease to reduce the social-culture aspects of the aging and Alzheimer’s disease. This model proposed a cure to Alzheimer’s disease; however, this model was abandoned due to the emergence of care models in 1990s and onward. The majority of models were discovered to make an early diagnostic of Alzheimer’s disease, however, due to the lack of any proper treatment the early diagnostics of this disease were remained useless as no cure was offered. The only way with which the early diagnostic or predictive technologies could help in the treatment of Alzheimer’s disease is that these early diagnostic models should eb a part of Alzheimer’s disease management in its early stages. This study ahs also discussed various aspects of human life as well as the use of technologies such as MRI, CT scan and chemical testing to predict the early diagnosis of Alzheimer’s disease, however, still there is a need for developing new models due to flaws in existing models (Cuijpers & van Lente, 2015). Alzheimer’s disease is accountable for 70% of the dementia cases across the world therefore, the therapeutic paradigm of this disease has been moved to secondary prevention. Various social implications and ethical concerns has been identified in preclinical predictive approaches, therefore, there is a need of a proper predictive modeling is required to address the challenges brought be prevention approaches. The majority of predictive models have raised some social implications and ethical concerns that the majority of the studies on this matter has overlooked. The predictive models like Statistical algorithms method or the methods of source data such as imaging data, family data, genetic data, cerebrospinal fluid examination, neurocognitive assessment, electronic/medical health record, demographics and family history have raised some sort of ethical and social concerns (Angehrn et al., 2019). This study has investigated the direction of the therapeutic paradigm with respect to Alzheimer’s disease. It is also concluded by the study that there is a need to identify predictive models that could predict the occurrence of this disease years before. This is the first study in this field which has paid attention to the social and ethical concerns raised by the technological development for the prediction of Alzheimer’s disease.
The study of Tang et al. (2015) investigated 1,234 articles to investigate the new developments in risk prediction of dementia and Alzheimer’s disease and concluded that new developments like non-APOE genes testing, incorporation of diet, application of non-traditional risk factor of dementia, ethnicity and physical function, and inclusion of some development in subgroups with diabetic individuals and those with different educational levels. However, after making an investigation of various studies, it is concluded that there is no single study that could be used for the prediction of dementia. Moreover, it seems impossible to have a predictive model that fits all. There is a high need to make researches for the development of existing predictive models as well as for developing new models, however, it is important to consider various predictive models (Tang et al., 2015).
According to the study of Haas et al. (2016) many predictive models for Alzheimer’s disease have failed due to the absence of reliable models. This is because the majority of models are computerized and there is a need for a more humanized kind of models that best suits the clinical situation. The biggest need is to make sure that data is shared among all the healthcare organizations because it allows researchers to address the various scientific questions in different predictive models. The availability of data will also enable the researchers to access both real life data and clinical trials data to innovate a more accurate and ethically sound predictive model. The diagnosis and prediction of Alzheimer’s disease is very difficult because of its different symptoms in different patients. The study of Haas et al. (2016) contributed in this field by identifying the various weaknesses of the existing predictive models. The presence of an effective predictive model could change the entire direction of the treatment of Alzheimer’s disease. The article has identified few real-world examples of such predictive models which contributed effectively in various CNS (central nervous system) diseases. Also, it is suggested that for the development of a predictive model, government and private organizations should make a partnership. Moreover, the progression of this disease from preclinical, mild and severe is different among different individuals. Instead on investigating appropriate predictive models, there is a need to invest in the training of physicians to make them ready and competent enough to manage Alzheimer’s disease at various stages. The improvement in the understanding level of the physicians could improve the overall cycle of treatment and management of the Alzheimer’s disease (Margolis, 2017). This study has identified a more realistic side of the Alzheimer’s disease that instead of developing a new predictive model, it is better to invest in the training of physicians and medical staff to deal with different types of patients at different stages of Alzheimer’s.
Due to the lack of discovery of the pathogeneses of Alzheimer’s disease there is no proper cure available for it to date. Since it is widely believing that pathogenic changes began to occur years before therefore, it is important to have an accurate and effective predictive model to accurately screen, diagnose and prevent this disorder. Unfortunately, due to the polygenic nature of Alzheimer’s disease, it has not been possible to effectively predict the level of Alzheimer’s disease (Nazarian & Kulminski, 2018). This study has stressed on the importance of discovering the biological process involved in Alzheimer’s disease because the Alzheimer’s disease pathogenesis in not fully discovered due to which not predictive model is working effectively. Once the pathological changes are fully discovered, it would become possible to develop an effective and standard predictive model to treat Alzheimer’s disease.
References
Angehrn, Z., Nordon, C., Turner, A., Gove, D., Karcher, H., & Keenan, A. et al. (2019). Ethical and social implications of using predictive modeling for Alzheimer’s disease prevention: a systematic literature review protocol. BMJ Open, 9(3), e026468. doi: 10.1136/bmjopen-2018-026468
Cuijpers, Y., & van Lente, H. (2015). Early diagnostics and Alzheimer’s disease: Beyond ‘cure’ and ‘care’. Technological Forecasting and Social Change, 93, 54-67. doi: 10.1016/j.techfore.2014.03.006
Haas, M., Stephenson, D., Romero, K., Gordon, M., Zach, N., & Geerts, H. (2016). Big data to smart data in Alzheimer’s disease: Real-world examples of advanced modeling and simulation. Alzheimer’s & Dementia, 12(9), 1022-1030. doi: 10.1016/j.jalz.2016.05.005
Margolis, R. (2017). Exploring Outcomes and Value across the Spectrum of Alzheimer’s Disease. Presentation, 1201 Pennsylvania Avenue NW, Washington, DC 20004.
Nazarian, A., & Kulminski, A. (2018). POLYGENIC PREDICTIVE MODELS FOR ALZHEIMER’S DISEASE. Innovation in Aging, 2(suppl_1), 102-102. doi: 10.1093/geroni/igy023.382
Nie, L., Zhang, L., Meng, L., Song, X., Chang, X., & Li, X. (2017). Modeling Disease Progression via Multisource Multitask Learners: A Case Study with Alzheimer’s Disease. IEEE Transactions on Neural Networks and Learning Systems, 28(7), 1508-1519. doi: 10.1109/tnnls.2016.2520964
Stallard, E., Kinosian, B., & Stern, Y. (2017). Personalized predictive modeling for patients with Alzheimer’s disease using an extension of Sullivan’s life table model. Alzheimer’s Research & Therapy, 9(1). doi: 10.1186/s13195-017-0302-6
Tang, E., Harrison, S., Errington, L., Gordon, M., Visser, P., & Novak, G. et al. (2015). Current Developments in Dementia Risk Prediction Modelling: An Updated Systematic Review. PLOS ONE, 10(9), e0136181. doi: 10.1371/journal.pone.0136181
Wang, T., Qiu, R., & Yu, M. (2018). Predictive Modeling of the Progression of Alzheimer’s Disease with Recurrent Neural Networks. Scientific Reports, 8(1). doi: 10.1038/s41598-018-27337-w

The post Develop an effective and standard predictive model to treat Alzheimer’s disease. appeared first on ExpertCustomWritings.
Assignment status: Solved by our experts

>>>Click here to get this paper written at the best price. 100% Custom, 0% plagiarism.<<<

Leave a Reply

Your email address will not be published. Required fields are marked *